陈帅教授课题组发现心脏钙稳态调节和控制新机制澳门十大博彩公司网站

心脏搏动过程中,心肌细胞中钙离子在细胞浆与肌浆网之间穿梭是实现心肌兴奋-收缩耦联的关键步骤,这一过程发生紊乱会导致包括心衰在内的诸多心脏疾病。因此,在由于细胞浆/肌浆网钙穿梭异常导致的心脏疾病治疗中,恢复心肌细胞的钙稳态是一种非常诱人的药物研发策略。心肌细胞中,SERCA2a是一个位于肌浆网上的钙-ATP酶,其主要功能是通过水解ATP介导钙离子从细胞浆到肌浆网内的转运,从而控制心肌舒张。在成熟的小鼠心肌细胞中,大约95%的胞浆钙离子是由SERCA2a重新回收到肌浆网内的。SERCA2a表达量或活性降低都延迟会肌浆网对钙离子的重回收,进而导致肌肉舒张/收缩减弱。因此,以SERCA2a为分子靶点恢复心肌细胞钙稳态、进而治疗心衰等心脏疾病具有非常大的前景。然而,SERCA2a功能调控机制到目前为止尚不十分清楚,而此类调控机制的解析有助于为以SERCA2a为靶点进行药物研发提供新思路。

北京大学分子医学研究所肖瑞平教授研究组发现受体相互作用蛋白3(RIP3)通过活化钙/钙调素依赖的蛋白激酶II(CaMKII),参与心脏缺血和氧化应激引起的心肌细胞程序性坏死的调节过程。该工作于2016年1月5日在线发表于Nature
Medicine
杂志(

2018年12 月19日,模式动物研究所陈帅教授课题组在国际主流期刊《Circulation
Research》上在线发表题为“SPEG Controls Calcium Re-uptake Into The
Sarcoplasmic Reticulum Through Regulating SERCA2a By Its Second
Kinase-Domain
”的论文。该研究从蛋白质组学入手,发现SERCA2a可以与横纹肌特异性表达的蛋白激酶相互作用;通过一系列深入研究证明了SPEG是SERCA2a的一个全新调控因子,可调控钙离子在细胞浆与肌浆网之间的穿梭。这项研究揭示了心脏钙稳态调控的一种新机制,为钙稳态异常导致的心脏疾病的发病机理及治疗提供了新思路。

心肌细胞的坏死和凋亡在包括心肌梗死、缺血/再灌损伤和心力衰竭等多种心脏病理过程中发挥重要作用。过去30多年的研究绝大多数都集中在心肌细胞的凋亡过程,但是对心肌细胞坏死的调节机制知之甚少。

SPEG属于肌球蛋白轻链激酶亚组钙调蛋白激酶丝氨酸/苏氨酸蛋白激酶家族的一员。其C端含有两个串联的丝氨酸/苏氨酸蛋白激酶结构域,其第一个激酶结构域与MLCK亚组的其他成员具有更高的同源性。之前有研究表明,SPEG不仅是心脏发育所必需的、也是维持成年小鼠心脏功能所必不可少的;但是到目前为止仍然不清楚SPEG是如何来调控心脏功能的。

肖瑞平研究组的工作发现RIP3的缺失能够预防缺血和氧化应激引起的心肌细胞的程序性坏死,而过表达RIP3则足以引起心肌细胞的坏死。与已知的多种细胞的程序性坏死不同,RIP3引起的心肌细胞坏死不需要RIP1和MLKL的参与,而是通过激活CaMKII,进而造成心肌细胞的程序性坏死以及后续的恶性心脏重构和心力衰竭。RIP3是通过直接磷酸化和活性氧依赖的间接氧化引起CaMKII的活化的。同时RIP3-CaMKII信号通路还参与心肌细胞的凋亡和炎症过程。

在本篇研究中,陈帅教授课题组首先通过蛋白质组学分析鉴定出SERCA2a是潜在的可以与SPEG发生相互作用的蛋白。研究人员利用免疫共沉降实验证明无论在体内还是体外,SPEG与SERCA2a都存在相互作用。随后通过在细胞系以及新生大鼠原代心室心肌细胞中进行一系列的实验,他们发现SPEG的第二个激酶结构域可以与SERCA2a相互作用、并直接磷酸化SERCA2a的Thr484位点,进而促进SERCA2a的寡聚化,最终增强SERCA2a转运钙离子的能力。

此项工作不仅发现了一种全新的程序性细胞坏死机制,即由RIP3-CaMKII通路介导的、不依赖于经典的RIP1-RIP3-MLKL通路的程序性坏死,而且发现CaMKII是一种新的RIP3激酶底物。本研究成果拓展了人们对程序性细胞坏死调节机制的基本认识,同时为重大心血管疾病包括心脏缺血和缺氧损伤、恶性重构和心力衰竭的预防和治疗提供了新靶点和新途径。

澳门十大博彩公司网站 1

北京大学分子医学研究所博士研究生章婷和副研究员张岩是论文共同第一作者,肖瑞平和张岩是文章的共同通讯作者。该项研究得到国家自然科学基金委、科技部973项目、科技部国家科技重大专项、北大-清华生命科学联合中心、生物膜与膜生物国家重点实验室和北京市重点实验室的支持。

图一 SPEG-SERCA2a轴线调控心肌细胞钙离子稳态与心功能

澳门十大博彩公司网站 2

小干扰RNA是一种常见的基因沉默工具,进入细胞后可以引发相应基因的信使RNA快速降解。利用siRNA在NRVC敲降SPEG后,SERCA2a-Thr484的磷酸化水平及肌浆网的钙离子回流都受到了抑制,说明SPEG可以调控SERCA2a的功能。此外,将SERCA2a的Thr484位点突变成不能磷酸化的丙氨酸后,相较于野生型SERCA2a而言,
过表达SERCA2aThr484Ala突变蛋白的NRVC中肌浆网钙离子回流时间延长,进一步说明该磷酸化位点是SERCA2a的关键活性调控位点。

A.
接受缺血/再灌注损伤(30分钟缺血/4小时再灌注)的野生型和RIP3敲除的小鼠中,心肌伊文思蓝染料摄入(EBD,红色,细胞坏死的指标)和CaV3(绿色)抗体标记的心脏照片(比例尺,30μm)。
B.
RIP3诱导CaMKII磷酸化及氧化,进而造成心肌细胞程序性坏死的双重机制的示意图。

为进一步研究SPEG-SERCA2a这一轴线的在体功能,陈帅教授课题组利用Cre-loxp系统在成年小鼠心脏中特异性敲除Speg基因。与对照小鼠相比,SPEG心脏特异性敲除小鼠罹患严重的扩张型心肌炎,心功能显著降低、并随时间推移不断恶化,最终过早死亡。他们的机制研究显示,缺失SPEG的小鼠心脏中SERCA2a-Thr484的磷酸化水平以及寡聚化都显著降低;最为重要的是,在SPEG心脏特异性敲除小鼠的心功能发生异常之前,其心肌细胞中肌浆网的钙离子回流已经受到抑制。这些结果表明,SPEG-SERCA2a调控轴线具有重要的在体功能,SERCA2a功能受损是SPEG心脏特异性敲除小鼠发生心衰的重要原因。

编辑:安宁

综上,该项研究发现了心肌细胞中SERCA2a功能调控的全新机制,并且阐明了SPEG是恢复心肌细胞钙稳态以及心衰等心脏疾病治疗的新的分子靶标。

模式动物研究所博士生全超和李敏为本文共同第一作者,南京大学陈帅教授为本文通讯作者。

(模式动物研究所 科学技术处)